
UNCLASSIFIED

AD'400 614

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procuremeiit operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



TR-1-11

ANGULAR MOMENTUM SAT

"Nick Karctyianis

Clyde A. Morrison

ASTIA

8 March 1963 APR 91963

TISIA A

HARRY DIAMOND LABORATORIES
FORMERLY: DIAMOND ORDNANCE FUZW LABORATORIES

ARMY MATERIEL COMMAND

H.D*L WASHINGTON 25, D.C.



HARRY DIAMOND LABORATORIES

Robert W. Mc]voy B. M. Horton
LtCol,. Ord Corps T.echnical. Director
Commanding

MISSION

The mission of the Harry Diamond Labbratories is:

(1) To Perform research and engineering on systems for detecting,
locating, and evaluating targets; for accomplishing safing, arming,
and munition control functions; and for providing initiation signals:
these systems include, but are not limited to, radio and non-radio
proximity fuzes, predictor-computer fuzes, electronic timers,
electrically-initiated fuzes, and related items.

(2) To perform research and engineering in fluid amplification
and fluid-actuated control systems.

(3) To perform research and engineering in instrumentation and
measurement in support of the above.

(4) To perform research and engineering in order to achieve
maximum immunity of systems to adverse influences, including counter-
measures, nuclear radiation, battlefield conditions, and high-altitude
and space environments.

(5) To perform research and engineering on materials, components,
and subsystems in support of above.

(6) To conduct basic research in the. physical sciences in support
of the above.

(7) To provide consultative services to other Government agencies
when requested.

(8) To carry out special projects lying within installation
competence upon approval by the Director of Research and Development,
Army Materiel Command.

(9) To maintain a high degree of competence in the application
of the physical sciences to the solution of military problems.

The findings in this report are not to be construed as an
official Department of the Army position.



UNITED ISTATES ARMY MATERIEL COMMAND

HARRY DIAMOND LABORATORIES
WAMIIN•NON 15. D.C.

DA-597-01-006 TR-1I11
00 Code 5016.11.64400
HDl Proj A0232 8 March 1963

ANGULAR MOMENTUM STATES

Nick Karayianis

Clyde A. Morrison

FOR THE COMMANDER:
Approved by

L.IL Hatcher
Chief, Laboratory 300

Qualified requesters may obtain copies of this report from ASTIA.

1w1



PREFACE

This report is intended to be the first of a series that will at-
tempt to incorporate some of the latest theoretical techniques into a
unified but concise treatment of crystal field theory and the analyti-
cal methods used therein. The series of papers assumes familiarity
with the fundamentals of quantum mechanics, and a firm background in
general physics and mathematics.

The book of E. U. Condon and G. H. Shortley, "The Theory of Atomic
Spectra," first published in 1935 and reprinted as late as 1959, pro-
vides a solid basic reference to the field, Since the time it was
first published, there has been an increased use of group theoretic
methods (Bethe used these methods in a paper as early as 1929) and
"Racah Algebra" in the analysis of the atomic spectra and their modi-
fication due to crystalline fields. The book by M. E. Rose, "Elemen-
tary Theory of Angular Momentum," provides an excellent account of the
Clebsch-Gordan (vector coupling) coefficients and the Racah (recoupling)
coefficients, the manipulation of which constitutes the so-called "Racah
Algebra."

The standard reference to group theory is E. P. Wigner's book by
that name, but there exist references that are more readable. Examples
of these are J. S. Lomont, "Application of Finite Groups," and M. Hammer-
mesh, "Group Theory,."

Although these latest references are readily available, there are
several examples in the literature where the methods employed are not
quite up to date. There is failure, in some instances, to recognize the
unified treatment of quantities which have been given various symbols by
different authors but are s±mply related to C-G and Racah coefficients.
As a result, some unnecessarily involved and lengthy expressions have re-
sulted. Now with the availability of complete tables of 3-j and 6-j sym-
bols which are proportional to the Clebsch-Gordon and Racah coefficients
respectively, the expression of results entirely in these quantities is
at least desirable, if not necessary.
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ABSTRACT

This paper is intended to be the first of a series that will at-
tempt to incorporate some of the latest theoretical techniques into a
unified but concise treatment of crystal field theory and the analyt-
ical methods used therein. The emphasis in this paper is on angular
momentum states and the so-called Clebsch-Gordan and Racah coefficients
which arise in the handling of such states.

In order to illustrate the use of the formalism introduced in con-
nection with the angular momentum states, a simple problem in quantum
mechanics is solved in detail. The problem brings out some features
of atomic systems such as the Zeeman effect and spin-orbit coupling, and,
in addition, it illustrates the use of first and second-order degenerate
perturbation theory.

1. INTRODUCTION

In the treatment of quantum mechanical systems with bound states due
to central potentials, it is convenient to describe the system in terms
of angular momentum states (ref 1). Even in cases where the spherical
symmetry is destroyed by the imposition, say, of an external magnetic or
electric field, angular momentum states in many cases, still serve as a
useful basis in which to represent the system. For this reason, the
earlier sections of this paper describe the essential features of angular-
momentum states and their associated properties. The later sections of
this paper utilize some of these properties in the analysis of an illustra-
tive problem and introduce, in addition, the techniques of elementary per-
turbation theory.

2. ROTATIONS OF ANGULAR MOMENTUM STATES

Let us denote an angular momentum state by jim\. The arguments as-
sociated with this state indicate that it is an eig6nstate of J8 and J
thus ,* 

z

75 Jim> = i(i+l) 'Jim > (1)

SzJim) = mJim> (2)

where J2 and Jz are, respectively, the square of the total angular momen-
tum operator and its z component.

The total angular momentum operator may be defined in terms of the
three dimensional rotation operat6r R (6,G), (ref 2)- where ý is the unit

* The units 1! = c = 1 are used throughout this report.
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Vector about which the rotation through an angle 9 is effected. An
alternative description of the rotation is provided by the EUler angles
(ref 3) so that R 6,0) may, equivalently, be denoted R (a P Y). In

terms of such a rotation operator, the angular momentum operator is
defined by

SR~n,) IJim > e-A- JO Jim> (3)

or, equivalently,
R(a P Y) Jim > -= e-~Z• e-Iy e-iz IJim> (4)

Assuming the Jim> to have a normalization,

<•'m ljm> = m (5)

the matrix representation of R (a P y) in that basis is defined thus,

Ki'm' JR(a P Y) = Dig, (a P Y) (6)

The rotation operator is diagonal. in j since the angular momentum of a
system is not altered if the system is viewed from a rotated frame.
The projections of J, however, are obviously not conserved under such
an arbitrary rotation. Using the completeness relation for the states
lJm> , i.e.

Jlim>> -- (7)

jm

one may determine the result of rotating an arbitrary state. The re-

sult, using (6) and (7) is,

R(Qa Y)lim> I " R(o p Y) lJm>

= m i'm> Km'm'IR(a f Y) 1am>
'IlJ m#

- D- (a PY) im'> (8)
mI

* For those not familiar with the iDArac bra-ket notation, associ te wave

functions *jm with the ljm> and dr", P with for

the matrix element of an arbitrary operator P . Further information
may be obtained in "Quantum Mechanics," E. Merzbacher, p. 306, (ref 1)

or "The Principles of Quantum Mechanics," P. A. M. Dirac (ref 10).
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Thus one has expanded, into the set of states that form the basis, the
result of rotating the state lJm > (which itself is one of the "members"
of the basis) through angles defined by a, 0, Y. To avoid confusion, it
is here emphasized that the operator R (a 3 Y) as defined above operates
on the physical system described by the ket and physically rotates that
system. After such a rotation, the physical system is not (in general)
in a pure state insofar as the basis of states (the lJm>) is concerned.
It is in a state of impure z projection as evidenced by its description
as a superposition of pure states with various m values as given by (8).
In many places in the literature one will read that the coordinate system
is being rotated and in many instances, it is not clear, to which coor-
dinate system reference is being made. The interpretation given above
seems to be less confusing. I

It is convenient at times t6 write the explicit dependence of

D mim(a P Y) on its arguments a and Y. That this is possible is easilym am

seen if the expression (4) is substituted into (6). The result is

Di (COY) = e- WzaI e Y Ji>

(9)

0-eim (X <M' 8 iiyP e-mimy

since the Jz can be replaced by the eigenvalues of the states on which
they operate.*

The matrix element in (9) is denoted by the symbol d1  (a), so that
one has,

Dm,(aIY) - e-Imp m dm() e-imry (10)

where

di M a m , le iJyP Jm'1am m /j

To fix some of these results and to relate the DJ to known functions,
consider the rotation of a system described by a Legendre Polynomial
P (cos 00), (ref 1, 4). Now, 0 can be considered as the angle between
t~o unit vectors. It is simply ao function of the dot product of these
two Vnit vectors which are purely intrinsic to the system, and, thus,
independent of any external reference frame. Therefore, one must have,

*For example, such a requirement can be thought to define what is meant

by e iJzaI, viz., e-iza Jim> W e'tauljm>if az Jim> = m Jim>



ROPY•) P ' (Cos 00) =f P 't(Cos 00) (1

independent of the rotation. From (A15) Appendix A;, Pt may be expressed
in terms of the spherical harmonics, Y4, (ref 4), thus enabling a differ-
ent interpretation of RPii. Since the Ttm are angular momentum states( (

i• we may apply formula (8) to obtain

R(c43) P t(cos 0o 0 (it 1r R(4BY) YO(6o,0)

m

In the abqve, the Yo (9 ,O) refers to a particular orientation of the phys-

ical system with one of the unit vectors in the x-z plane (hence C0 = 0),

and the other specifically along the z axis, so that the angle between the
two is the 0 as required. The angles 0, T are the spherical coordinates
of the former unit vector after rotation. Using the invariance of Pt
(cos 0 ) as expressed by (11) and'comparing the result (12) with the addi-
tional formula for the spherical harmonics given by (A15), one concludes
that

D (C43y) 4r y (*,Ct) (13)

That D- (Y) is independent of Y 4s seen by (10). The expression (13)

is an important relationship and is used later.

The DJ are thus shown to be simply related, for certain values of
their arguments, to the more familiar spherical harmonics. Some of the
properties of the DJ are listed in Appendix C for convenience.

3. ADDITION OF TWO ANGULAR MOMENTUM STATES

When adding two angular momentum states to obtain a combined state
that has a definite total angular momentum (ref 2), one necessarily loses
some information in the process. Initially, one possesses a "product"
state

1il n 1 1i2m2 >0 I jlmlj2In2) (14)

which is defined by four quantum numbers. It is desired to obtain (by
some superposition of such states) a resultant state JJlj2 > that

has a well-defined total angular momentum and projection as indicated,
and in which the individual angular momenta are preserved as good quan-
tum numbers. The transformation can formally be effected thus,
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IJ im ljp2m2

The matrix element is proportional to %jj j, so that the final form

is

IJiMilj 2 > = <lmli2m2 I JMJpI2> Iilmli 2 m2 > (16)
mlm

The coefficients given by the matrix element above are generally called
Clebsch-Gordan (C-0), vector coupling, or Wipner coefficients and con-
stitute an orthogonal transformation. Froni here on, the notation to be
used for them is

<Jl(ml) j 2 (m2 ) IJ(M)> m KJlmlJ~m2 IJMJl> (17)

denoting that angular mementa J and J2 with projections m and m2 are

added to produce a resultant total angular momentum J with projection M.
Other useful properties of these coefficients are listed in Appendix B.
In the simplest one, the coefficient vanishes unless m1 + m2 = M.

Therefore, the sum in (16) over one of the mi can be performed to obtain,
in the new notation,

IJMJlJ 2 > = Z~jl(m) J 2 (M-m) IJ(M) > IJlmJ 2 M'm > (18)

m

In this form, the information which has been "lost" in order to gain
information about the total angular momentum is made apparent. In summing
over m, we have lost information regarding the individual projections m
and m 2 written m and M-m, respectively. In other words, in order tooA-
tain a state with well defined total angular momentum J one must superim-
pose states of all possible projections m1 and m2 consistent with the re-

quirement mI+m2 = M. The amplitude with which each such combination enters

into the superposition is given by the Clebsch-Gordan coefficient as shown
in (18).

An immediate application of (18) can be made to the electromagnetic
field of any such vector field (ref 4). The orbital angular momentum in
such a field is given by the Y a kd the intrinsic spin of that field is

one, hence it is described by Ie t,, the spin-one spinors (ref 4, 5).
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The Y is an angular momentum state of angular momentum t' and projection
m. Tie X. is an angular momentum state of angular momentum one and pro-
jection p.1 Hence, according to (18)IM =l(<t.±- ) IJo(JO)>Yjiu.P) X (19)

where the equation defines the vector spherical harmonics, the These

are wave functions of total angular momentum J and projection M, and are
useful to describe the radiation from atomic states that are expressed in
terms of total angular momentum states.

Another example that is., perhaps, more familiar is the coupling of
two Pauli spinor (spin pne-half) Ptates. Let lý apresent a Pauli
spinor (ref 6) where = ± 1/2 then,

*Jli = (w-i') g (p') I l(1-1)> Xi X, (20) o
p

and

*00 I = P') .! (ill') 10(0)' >X_ Xi, (21)/1
#00- 2-. 2,>,P

p

The states given by (20) are the familiar triplet states for two parti-
cles usually denoted Xt, and the state given by (21) is the singlet two-

particle state, usually denoted Xs.

The addition formula for two D is obtained by a consideration of (18).
Rotate the physical systems related by (18) with the operator R(C43y). 'One
may write

R(C41Y) liI •lJ2> =Z Jl(m)J2(M-m) IJ(M)> R(Ck5y) lJlm>

m

. R(o4y) Ij 2 M-m>, (22) -'

since the state Ii mi M-m> is a product of two single system states ac-
cording to (14). Taking the matrix element with the adjoint equivalent
of (18) and referring to the definition of DJ given by (6), one obtains,

J6j11DJIM (04Y)= &Jl(m)j2(Id-m) Jim)> <JlmW)J2 (M-mI) IJ'(.')

JJDJt (WY)) (23)
12 -m M-m



The expression above is easily inverted JX one operates on both sides
with

- <J'(0Jd2(MWp IJim)> <II1iol)1 2od'-pl) 1IJ'(W) > (24)

and uses the property of the C-G coefficients given by (BO) Appendix B,
The result is

J DJl, (C43Y) DJ 2  
,_,(C4y) (25)

If, now, V/ and MU are set equal to zero, the expression above reduces
(applying (13) and taking complex conjugates) to the expression (A22)
Appendix A involving the spherical harmonics.

The result (25) enables one to evaluate integrals involving three
(or more) DJ. The orthogonality of the DJ is expressed by

mw * (O) D (COY) = 2j + 1m , (26)
2jp m j mm

where dw =- da d(cos P) dY. Therefore, using (25), it is simple to
deduce

dw DJ ,(043Y) DJl (C4Y) DJ2 (C4,I) = 8TJ
UM m2 2 1'2 <iJ (ml)J 2(m 2) IJ(M;ý

• < ji(ý1)J2 ( 2 ) IJ(M')> (27)

where the Kronecker deltas involving the projections are implicit in
the C-0 coefficients. For M * 1 ff= p = 0, one may obtain by the use
of (13), the fdllowing expression for tie integral of three spherical
harmonics,

• (2t, 1+1) (2,2 +II in

dfO Y* (@If) Y (Q,,)1 Y (@,CP) = I - (m t' (m2 )"

*' 1 (o)t 2 (o) IL(O)> 
(28)

where dO• m dCP d(cos 0). It is an often used fact in the theory of
atomic spectra that,

(OM 2 (0) ,L(O)> - [1 + (-) 1 4 2 +L] (29)

i.e., it vanishes unless tl+t 2 +L is an even integer.
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V

In the manner demonstrated above, one may proceed to evaluate the
integrals involving an arbitrary number of DI or sphorical harmonics.
The integrals will, of course, be expressed in terms of the C-G coeffi-
cients.

In many ways, it is advisable to become familiar with Dj. They are
referred to as the irreducible representations of the three dimensional
rotation group, a three-parameter continuous group. Although their nor-
malization (26) is not as simple as that of the spherical harmonics, in
certain applications their use is to be preferred. Such matters will be
considered in a later paper.

4. ADDITION OF THREE ANGULAR MOMENTUM STATES

The method of coupling three angular momentum states (ref 2) to ob-
tain a total angular momentum state proceeds logically from expression
(18). The procedure is to couple two of the states (any two) to obtain
a resultant two-particle total angular momentum state, and then to cou-
ple this resultant state with the third state, again according to (18).

To illustrate, suppose the three states are Jlm 1 ) , [J 2 m2 > and

1iJm Couple the first two to obtain

IlmJi) =Ki l~(m 2)1 2~)> m~i 1 2m (30)
mlm2

remembering that the sums are restricted since <'i(Mo1 )im) li(m)>
cc 6 ml+2,M . Then, couple 1jmJlj24 to 1hto in,

IJUJi3> = X~j(m)i 3 (m3) IJ(M)> limj~i2> li 3 '3 > (31)
mm3

If (30) is substituted into (31), then result is

iJm(JlJj2)(JJ3)> = RJl(ml)J2(m2) lJ(m)> <ý(m)J3(%) IJim> [Jhm.)J2mý

m Iu2 mm3  (32)

"1I 3 m3>

Each of the individual angular momenta as well as the intermediate j are
good quantum numbers (since they have not been summed out) and are there-
fore included in the resultant state. Because of the nature of the C-G
coefficients, the sum over projections collapses to a sum over only two
indices.

14



IM1i2)(i3)> - Xja1 )j2'("-'A~i(m)><Kimij3 (M MIJ(M)>
MIA

1ltA.> lJ~m-g> lj3M-M (33)
The order in which the individual angular momenta appear in
1JM(Ji )(iJ 3 )> is very important because it indicates the order In

which the states were coupled. For example, Ij'M'(J2 J 3 )(jIjl)> de-
fines,

j'm'(J2 i 3 ) (Jl ~1)> - XK192(P'ia(M1P') I '(m')>KJ 'Om1')j 1 (MO-M') IJ'(M I~
rap°

IjI Ml'_m '> IJ2A'> l'j3m'-P'> (34)

The order in which the single particle states appear in the summation is
immaterial since they do not interact amongst themselves. What is im-
portant, however, is the order of the angular momenta in the C-0 coeffi-
cients. It is emphasized, too, that the projections of the individual
angular momenta are the same in the C-O coefficients and the states that
they couple.

It is frequently of interest to express a three-particle state that
has been formed by one method of coupling in terms of states coupled in
a different manner. This expression is determined by obtaining the fol-
lowing matrix element,

mu
mu'p

. 8 , .8, oo

m-1i, I lA,M -m1 6M-m,n -p (35)

using the normalizations given by (5). The product of the three Kronecker
deltas in (35) involving the projections are equivalent to 6 ,8MVP'6M•,m'

so that the sum over m, and p' can be performed. The result is

15



<j M 2j3i')(j j'i) JM(jli2)(ii 3)>= 8* '61J 61~ Jj 8M'

4<JlP~j(mP ljm)>< imWh3 (M-m) jI(M)>

Q 2(mV)i3(Mm) 1j'(M- P) > Ki'(Mf-)ii () Ij'(')> (36)

In order to allow the use of (BO) Appendix B).' the C-G coefficients
involving j1 and J* must be recoupled so that they assume the form of
the first two coefficients. To effect this, the so-called Racah coef-
ficients (ref 2), W (a b c d; ef), must be used. These coefficients
accomplish the task desired, as follows:

,!, a(pt)b(m-) je(h)> <e(m)d(M-m)c(M))

[(2e+l)(2f+l)j3-' W(abcd;ef)

• < b(m-p)d(Mim),) jf(M-p)> <a(p)f(M-V) jc(M)ý (37)

In order to apply (37) to our problem, first J and J3 must be inter-
changed. Using, whenever necessary, formula (15), we-obtain,

<12(m*)m3(V-m) <JI(M-)) > <<1,(Mm)jl(M)fjI(m) >>

( `2+J'3-J I(

=(_)J2+J3_"X1 oZ2j1 +1)(2f+l)31/s W(j 3j 2Jj 1 ;1j If)

f

< J2 (M- 0.1(0• Ifum) > <13 (M-m)f(M) J'(M) >

( -)J' -Jl ` • 2 j1 "+l) (2f+ ) ] 3/,l W(J 3J2J `11 l; 4,'f)

<Jl(0iJ 2 (m-) If(m)> (f(m)J 3 (M-m) IJ'(M)> (38)

If the result (38) is utilized in (16), then the sum over p may be per-
formed to yield 6fj according to (88). This, then, enables the sum
over f in (38) to be performed, fixing f=j. Then the sum over m in (36)
can be performed to yield . The final result is,
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< IN Q IJa)(J'J;) liJmU~i )(jii 3 >=i) ~~ 3 3  J

(_)JJl-J ( 2 j+l)(2j,+l)]IM W(j 3 J 2Jj 1 ;j 'j) (39)

from which we deduce

IJM(Jlj 2 )(ij 3 ) > = 1(-)J-Jl-j I[ (2 j+l)( 2 J 'I+l)]A W(j3 j 2 jjl;j 'j)

a'
SJM(j J2J3) (J If I • (40))

The Kronecker deltas in (39) could have been P redicted at the
start. In each of the states, the total angular mpmentum and its pro-
jection, and each of the individual angular momenta are good quantum
nuwbers and, what is more essential, are independent of the mode of coup-
ling. Thus, since the only way in which the two three-particles states
differ is in this latter property, one can expect and understand the
orthogonality in those discrete variables embodied in the Kronecker deltas.
The intermediate angular momenta j and jI howevir are not on the same
footing since the former is the result of j and j 2 coupling in a pre-
scribed manner, and the latter is the result of a coupling between j 2 and
J . Formula (4) expresses the fact that IJM(J 1lJ 2)(jj 3 ) > is a mixture
oi states IJM(J2J 3 )(aJ'l) ) with various values for thi intermediate angu-
lar momentum.

The symmetry properties of the Racah coefficients are given by Rose
(ref 20 p 226). T*ey are related to the Wigner 6-j smybols in the fol-
lowing manner, .given by Edmonds (ref 5),

W(abcd;ef) = (-)a+b~ c~ ( (41)
dc

Further information regarding the 6-j symbols is available in Edmonds, and
a complete table of their values for angular momenta less than or equal to
8 is given by Rotenberg, et.al. (ref 7).

5. APPLICATION OF THEORY

The foregoing general discussion shall now be utilized to calculate
the-energy levels of a rather simple problem. The problep is th&-b
consideration of a single electron in a coulombic potential (ref 6) with
spin or•5it coupling and a magnetic field. The specific Hamiltonian is

H-=oH + +H (42)

17



where p2
H _ + WV(r) with p -i V

0 m

H (43)

H 2 =X L - S

Although the problem is quite simple, its solution has the advantage
of illustrating many general features common to more complicated cases.

The problem is treated first by perturbation theory (ref 1, 6)
using states that are diagonal in Ho + H1 with H2 being the small pertur-
bation and carrying the calculation through to second order in H2 .
The procedure is then repeated using states that are diagonal in Ho and
H2 with H1 considered small. Finally the problem is solved exactly,
and the result is expanded to second order in H2 and then to second or-
der in H1 to show the agreement of the results obtained by perturbation
theory in each case with the exact result.

When the potential is coulombic, the energy levels of Ho depend
only on the principal quantum number n (ref 6). The eigenfunctions of
Ht are then of the form RnYd ) where t is the orbital angular momen-
tum quantum number and m ?tsrojection, and X,, is a Pauli spinor re-
presenting the spin of the electron. Only the case n = 2 is discussed,
hence ( - 1, 0 and m = 1, 0 -1 and i = + 1/2.* The energies given by
H1 and H2 will then be relative to the energy level associated with
n = 2 for the operator H above.

o

6. CASE I: S.ALL H2

In this case we consider the magnetic energy much larger than the
spin orbit energy and treat the latter as a perturbation. The magnetic
field will be taken to pOint in the negative z directiona so that

H, = iB H(L + 2Sz) (44)

where • is the Bohr magneton (ref 8). The states described by the
spheric l harmonics, Y m, are diagonal in L, i.e., LzY. m= mYtm and

the Pauli spinors, Y4, are diagonal in S , i.e., Sz XS = 1.X . For con-

venience we will replace m by M -p in the Ytm above. Then

1B H[Lz + 2SzI Yt-p XP = pB H(M+0) YCM._ýX (45)

*The nomber of states giving the same energy (degeneracy) for an electron
in a coulombic potential is 2n2 (equal to 8, in this case).
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and the energy due to the magnetic field is

E = L (M+j) where p B pBH (46)

We then obtain the energy levels listed in thelsolumn headed by EMP
in table I.

TABLE I. ENERGY LEVELS TO SECOND ORDER IN 12

1st 2nd

M E order order

1 3/2 1/2 2P 0

2
1 1/2 -1/2 0 x-,

1 1/2 1/2 2 o

1 -1/2 -1/2 -0 o

1 -1/2 1/2 -x2

1 -3/2 -1/2 -2P x 0

o .1/2 -1/2 P 0 0

o -1/2 -1/2 -P 0 0

We see that there are eight states, as there should be, with 3 of
the energy levels two-fold degenerate.

The perturbing Hamiltonian is

X"L S SL +-[L+ S- +L S+3 (47)
z z 2

where
L L ± iL i S = ±iS (48)x y x y

We will need the relations (ref 1)

L+ Y'Cm =4 m)(T±m+l) Y m~l (49)
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SX aX s+X S = X . S X , S +X = 0 (50)p -1'.1 _p. -p. +

The latter formulas are special cases of the former with J, * 1/2 and
*m a 4. In perturbation theory the energy of a given state m to second
order is given by (ref 6)

I () I(H n nH.
= + 9 (-m (51)

("2 m m m m n1
n

where (12) - d fl, H and *m are eigenfunctions of the un-

perturbed Ht•iltonian. Now

I+
X S L Y X a SL Y x 2  (e~s +L8CS X (52)

VX+ 2 ~ + -+
- • (M-p)p Y,.Xp + h WS-+ LS÷)Y -X (53)

(M-P)P YtMpLp 2Pp

The last part is easier to carry through by choosing specific values for

M., N, and p. For t, = 1, M = 3/2 and p -ý 1/2

(S+L" + S'L+) YllX1 /2 = 0 (54)

since L+y11 = 0, and S+X1/2w =0. The same result is obtained for L= 1,

M a -3/2 and p = -1/2 or

X YL , 1 XY,/ X tl (1) iTY111 Xtl/ 2  (55.)

Using the formulas given above, the results of the perturbation acting
on the remaining state is

11 -X1/2 - %1YlX- 1/2  2 - 1 Y /1X 1 1 2 + 2 10X1/2

H2¥ 1. 1X1/2 - - Ž• ¥1 -1X1, + ~4Y oxz
2 + 1 ,1 12 0 .- 1/2

H2YIoXl/2 i 2o -x/2 2 1
H2y10X'1/2 a2 11 -1/2 (6

H2 Y1 0 X-1/2 2 j5 1 -1 1/2

N2YOO~l - 0

H2 YoX 1 /2 - 0
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We see that the perturbation in no case connects degenerate states,
so that the second order energy cap be calculated by the simple method.

In general this is not the case when one has degenerate states, and the
problem can become rather involved (ref 6, p 155 ff.) The results of
the calculations for first and second order are shown in table I.

7. CASE II: Hl SMALL

If this part we use eigenfunctions of L, S, J * L + S and Jz and

call these functions M" . Then we have

j ,ts jl~)sJM = JM

0 YI/ = J(J+l) ts

I(57)

L2  = 1+ I) s

S2 It = (l i

The reason for using these eigenfunctions is that 2 can be written

"H2 = X L S - L2 _ S2j (58)

and is diagonal in the functions ./S Further since H is degenerate
iJM" 0

in the angular momentum we can also use these functions as eigenfunctions
of Ho, i.e.,

HR R 4't = En R JM (59)

This choice of eigenfunctions is desirable since the Hamiltonian H + H 2

is diagonal in that basis. In case I, the eigenfunctions chosen were
YLmX, because H + H (there considered as the unperturbed Hamiltonian)

is diagonal in that basis. Thus, from (57) and (58)

X L • sM [J(;+') - t,(,+l).- S(S+l)J FJM

[j, -(Q )- (

-since S = 1/2. The energy levels for different 4,, M, and J values are
given in table II, in the column headed by R.
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TABI. II. ENERGY LEVELS TO SECOND ORDER IN HI

let 2nd
m E order order

0 1/2 1/2 0 o

0 1/2 -1/2 0 -0

1 *3/2 3/2 20 0

1 3/2 -3/2 -2 02

1 1/2 1/2 --
3 27 X

1 1/2 -1/2 -X7)

Ag•ain there are eight states, as there should be, but in this case

two energy levels are two-fold degenerate, and one is four-told degen-

erate.

We now consider the perturbation N1. This can be expressed as

1 " " if ,"[ +28J . + s-/ (61)

Sgaice J is diaonal in the above representation we have only to con-

sider the perturbation as 1 se.

Analagous to the expression (19), we can write the following for
spin one-half

- ~QLC-p k) IJ(U)>YtmK (62)

and'
.14 .)) J(M)> P y_ X (63)

We can use expression (B9, Appendix B) to invert (62) so that

Y22 X4 P im> (64)
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Since the values of p are ±1/2 this can be expressed as

F (-I)l/.P Then

Using the rules for manipulation of the Clebsch-Gordan coefficients (Ap-
pendix 8), we have

tC(M-O) 1(p) IJ(U)> (- 1)l/2+p F2~ <J(-M) 1(p) ltAP-u) (66)

Hence

(-1) J+~ J1 <JM z

- 2 2 2l <

(~ 1 )~ 2  1 'U'1(p) If670)
-~~~~~ 2 2 ML2 ~ ( f J()

From table I in Rose (ref 2), we obtain 4

hence

!~(-P.) 1(p) 11(o)) K!(-P lw(p If(o)> - f1 (69)

Finally we obtain

It 1- Z462J+1 Wol .1 t J> () 1 1(0) 11

Mj It L

The final result for the total perturbation is
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OMJ - 2ljp (';j) JJim (71)

The explicit value of (j';j) for valuet, of J' and J of interest

can be calculated by using the results given by Rose (ref 2, Appendix I)
and are given in the tables below.

TABLE 111I. VALUES qtj')•=M 4' ,=0

3 1 3
2 2 2 2

"" - - M2 2/ 2M 0
2 3

3 _'29 221 3 0 0
- -- ....

The results can be written in compact form as

Ju " M 24.+l JM a 8- 3 4 JM

which holds for L = O0 J = 1/2 and for 1 = 1, J 1/2, j' = 3/2 and , = 1,
*J=3/2,lJf = 1/2. Again the perturbation connects no degenerate states,

so that the energy to second order is simply rproporttonal to the

square of the off-diagonal elements, i.e. 2 a d%/ . These
4 As " •1 - °•1 PM l " . T4s

give four elements T- .- twice and - -1•!- twice and are shown in the
'7 ) ~ 27 ). tieadaesonI h

last column In table II.

8. EXACT CALCULATIONS

To find the exact diagonal representation we can reduce the calcu-
lations somewhat by observing that the z component of J commutes with

,the total Hamiltonian. To show this we have

"H p H 4)XL 8 (L+2sz) + XL(L;s- + LCs) (73)H-• s • L" S I• (+ XzSz + 2

where L = L IL
x y

and L x L =iL

Then [L ,L± L- ± L±

and CSz, a±) - + S±
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Hence
(L +S)H e[L+S-L-S+ L+S- + LS+ i (74)

or [J z H] = 0, so that M is a good quantum number. To utilize this

fact, we use the functions YtM- X in place of YtM X P Since the

Y _ X form a complete set of functions, and since J commutes with

H, we can form the eigenfunctions of H from a superposition of the

YMX that is

a PY tmpxP (75)

where the a• are to be determined. The Schr&dinger equation becomes

x

H = = (J +S ) + XS L + (LBS" + L-S+)z z z z 2

a~ (P(M+.P) + X).±(U-g.)]

1- [a 1 / 2 (M+ 1 X + a-, x

a EYL NY (76)

Then I/1 1 2 ~u k 1 1 U-

a a + (M- g)3 + al/2 BI )

a_/E 9f a.-/ (P(M- •)+ -ý (M 4 , + al/ B(M + ) (7

where

B(* - t) = 1 1)

from ±

4 tM+l

Now the two equations in a and a are homogeneous and the 4eter-
minant of the coefficients '1  a Am~st vanish for a nontrivial solu-
tion. Hence ±1/2
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S1 )~1 1 } =
P(M+ ~)+ ý(M - C B)

1ix 1 X
B(M + )(M--) I (M

22 2 2 21-

so that U + 1 ) (78)

, = M - 4± 2 2TS)

When X = 0 this gives the unperturbed energy found in case I and when
P = 0 the unperturbed energy found in case II.

The energy can be expanded for small X to compare with the results
of perturbation given in table I. The expansion to second order in X
are

3 X

l,1 2P

1(1, •) -- • +2-
+ 2a

E(lrg) - +2-

2 2P

2 2P

E(O,-i) -2P

E(0,1

which are identical with the results shown in table I.

When the exact energy is expanded for small P keeping terms through
second order in P, we have

3 X
E(1,± 3) + 20 +

1 1 1 P 3 4P
( 2 4 ± 4  ± 2 7  IL (80)

( 0 ,± 3 X 4 p

s 2, )= ±
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and we see that the energies agree with the result obtained by second
order perturbation theory as given in table II.

The exact result can be computed for a complete range of variables
by making the following substitutions: 1 = x X - 2(1-x) 0 < X < 1
then

3
E(l' j) = 1 + x

E(lr3) = 1 - 3x

E(l, g.) = x - ± (2x 3 - 4x +

E(I- 1) = - 1 ± (3x2 - 5x + V

E(04±1) = ± x

Such a substitution, in effect, turns off one of the interactions as
the other is turned on so that at the point x = 0, there is only the spin-
orbit interaction, and at x = 1 there is only the magnetic interaction.
The proportionality constants are adjusted to give integer splittings at
both ends. The splittings for arbitrary X are plotted in figure 1.

It is noticed that the states which are degenerate at x = 0 move off
at different slopes, indicating that the degeneracy is lifted in first or-
der by a magnetic field. In contrast, at x = 1, the states that are de-
generate move off with identical slopes, indicating that second order per-
turbation theory is needed to lift the degeneracy (curvature is character-
ized by squared or higher power terms). These observations are evident in
the calculations listed in tables I and II.
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Figure 1. Relative energy levels as a function of the parameter xfor the Hamiltonian.

2w+ V(r) + x(L z+2S6 ). 2 (1+x) L;B, and for the principlequantum number n =2. (2n2 = 8 = total number of states).
The labelei in parentheses denote the orbital angular momentum (~and total angular momentum projection (Af) for each state.
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APPENDIX A

Orbital Angular Momentum Eigenfunctions

The eigenfunctions of the orbital angular momentum operator (squared)

are the spherical harmonics denoted by Y (9,T). We have

LO Y (@,CP) = Qt,+l) Y I(OcP) (Al)

Lr Y (O,CP) = m Y (O,'Cp) (A2)

where 1 • 1 - i e
L=- s " nj + sin a sin (A3)

and L = -i ) 
(A4)z TCP

In the usual manner, the solutions of LO can be split into products
of solutions, one set being functions only of 9 and the other set being
functions only of (.

The functions of 0 are the associated Legendre Polynomials (of the
first kind), the Ptm (9), and satisfy the equation

dPjmi dP d4 m m+ - m = 0 (A5)

where

Sa cos e

The functions of V are the exponential oscillatory functions, the
Simc and satisfy the equation

d= 0 (A6)

where the m in this equation is the same as in (AM) and

S=0,1 2, etc., < m < W A)

if the product solution P Z'm are to have physical meaning.
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The solutions Pm (p) are given by a simple formula in terms of the
solutions for m = 0, the Pt0(o.(). These latter solutions are denoted

simply

p -to~ W P (it'W (AS)

and are the so-called Legendre Polynomials. They are polynomials in p

of degree t, ar~d are given by Rodrique's formula

P 0=1 d •(ý .•-1) (M)

For positive m the P (4l) are defined by

Pm') -t(-')/2• (AlO)

d_ C

The p .m(p) (m positive again) are defined by

The' spherical harmonics are proportional to P *p-M with the following
normalization (m position again),

Y m,+l (C-m) 4% mc (A12)
•m4 (4'+m) M

From (A12) and (All), one can deduce that

Y = (-.y* (A13)

Another useful and important property of the Y is their transformation

under space inversion. Under such an inversion, 0 -0 T - 9 and Cp -. + 7r"
so that

PY m(0,0) Ym Or - 0, cp + r) = tm (0,p) (A14)

where P represents the inversion operation (called the parity operator).
From (A14) it is clear that the orbital angular momentum quantum number
t alone determines whether a state has Vven (positive) or odd (negative)

parity, depending on whether ot is even or odd.
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Other useful relations between the functions defined above are

2 +--'--4 Y (Cr) Y Am

P~cos9) 41? A"
24 m 1 tm

4(r+ ¥rm(. ) (A15)

wher@ cos 9 = r . The unit vectors used as arguments of the spheri-
cal harmonics represent the angle variables of the unit vectors, i.e.,

A A
YI ( ) a Y m (9,cp) where r r (9, ).

We also have,

1 r r < P (cos 9) (A16)

1 2whr cos 9 ! 1i * --r2 and r < denotes the magnitude of the lesser o

'r*I and 1 2 1Y, and r> denotes the magnitude of the greater. From

(A15) we have

1 471r rt< A A

r r 2t+l Y 'l m (rI) Ytm(r2) (A17)

Another useful formula is

eik•r = (2t,+l) (i)'" j(kr) PI(cos 9) (A18)

t

A A
where cos 9 m k - r, and the j (kr) are the spherical Bessel functions.
(ref 9). Again from(A15),

eik' = Z 4 r(i)t Ji(kr) Y ~*(A) y• (•) (A19)

tm

The formulas given above are extremely useful because of the nor-
malization of the YLm" They have the property that,
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dn Y 't t IMA'CP) 6 8l,8 , (A20)

where

4 d(, wrdCP jd(cos 9)

0 -1

The normalization of the legendre polynomials is such that

1 2

fd4 P'tg P I ~(p) (A1

A further property of the Y is

L [s

4%(m) t'(m') -IL(m4:m'>YL M+M((•),m)(A)

where the C-G coefficients are defined in Appendix B. From (A22) and
(A20), one may obtain,

YY (OC) Ye, (O,,) =(2.'+1(2t+l4) 0

d4 4r(2L+l

(Lm~m)jL(M)> (A23)
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APPENDIX B

Clebsch-Gordon Coefficients

Some of the useful properties of the Clebsch-Gordan (C-G) coeffi-
cients are listed here for convenient reference. The symbol used in the
text is

<il(ml) J 2 (m2 ) lJWm)) (Bi)

Some other symbols for the same coefficient that are used in the liter-
ature are

C(jlJ2i;ilm 2 m) - +m m C(j 1 J 2 J;m-m2 m2 )

"'12 <im L mIi+M2 'm 2m2

Cm mm C m m 0) ; m liJmJJ 2 ) (B2)
1 m2 1 l2 1/ 22 12

These coefficients are defined to be real. Their most important
property is

<Jl (ml)J2( I 1(m)) "M +m2 ,m A(J 1 1 2 J) (B3)

where A(jlj 2J) implies that IJ -j I < j < Ij +j ) for any combination
of apy. This is called the t~iaggle-coiMition, Rence the symbol
60J IJ2 J).

Other properties are

J l+J 2-= +-) <J 2 (m2 )j (M )I J(m) > (B5)

'-,2 2 11 1

= m-) 2+2, +1 ) ('M)J (m2) (-m

(B6)

= i- 11 (2+1 44 m Wu;I j J1I I (m) ( J2 (-m2)>

(B7)
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1 1g)J 2 ("'-P.) Ii(m')> <, .1(PjO2(3-g~) .1(m)> 6gga8 (B9)
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APPENDIX C

The DJ Elements

The I•J(r) have the properties characteristic of unitary irreducible
representations of a group, some of which are listed here.

DM IM(r) =D , (r

J* I".
DM, I(r)= (-)M DJ M (r) (C2)

J J / J

DMJ )D r = DD ' (rr') (C3)

dwr D M(r) D M /(r)=- 6 /MMI 6 (C4)

where dWr a j•da d(cos P) dY and r r (a Y Y).
0 1

If r = r(a P Y) and r' = rl (a•'•t'yF then

S2J+l J J* P-

87;7 DXM(r) DX (r') = 6(w-w (C5)

JXM

if r 0=r 004=) and r 0 r 0 (•''O) , thenr° o o 0

Z, 2J+l J J
-•-- D Cr) (r D (ro
47r )M 0 ),M o)0 8( ' (C6)

J•J

One may extract the a and Y dependence from DJ and write

DJM(r) = eIM'a JI (P) eiM ()

where the dJ\are real. Hence, for a = Y = 0, the formula progressing
logically from (C5) and (C6) can be written

Z 2J~l dj• J /)

2j-dj(P) dM(13 ' 6 (cos P-cos f') P8)

J
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Other properties of the dj are deduced easily from those of the Dj.
Some of theme are

d*lM (P) J (P) dJ M'-M Jd~M().dMIM d , (-a) = (C9)

d(cos d) M (0) d )M (P) "• 2-+1 11j (CIO)

j Comparing (CIO) with (A21), and recognizing the reality of the
d (6) and the P (1), we deduce that

P(coo P) = d (- ) (Cil)

Similarly, comparity (C4) with (A20), it is at least consistent
that

(a P 0) = Y (•,a) (C12)

The generalizations of (A22) and (A23) are

Vx'm(r) DI(r) ) L( X)\) )L(m)ILW '+m) D DL (r)

L (C13)

/Di D•T(r)D 'u/'D (r)= •--•t('4•X IL(A) '•m),( L(>
Sd~r AM 1I 44 I

(C14)
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